Beyond the last frontier: the deep ocean and why it matters

National Marine Sanctuaries

Webinar Series

Lisa A. Levin

Scripps Institution of Oceanography

(llevin@ucsd.edu)

Defining the Deep... How deep?

a. Deeper than you can scuba dive

b. > 200 m

c. > 1000 m

 $d. > 2000 \, m$

How much of the ocean floor is deep sea (> 200 m)?

We are limited by our perceptions

DAY 44:
STILL STRANDED, WITH
NOTHING BUT FLAT EMPTY
WATER AS FAR AS THE
EYE CAN SEE.

The First 100

- •Cold (2-4°C) years
- Dark (no sunlight)
- •Salty (34.8)
- •High Pressure (1 atm/10 m)

- Muddy
- •Homogeneous
- Stable
- Quiescent
- Food Limited

New exploration tools have revealed a wealth of heterogeneity in water properties, shape of the seafloor and life forms.

SEAMOUNTS (10s of thousands)

under-sea.html

Atlantic Pacific Ocean cific Indian Ocean

DEEP CORAL REEFS

Photo by L. Buhl Mortensen/ MAREANO

SPONGE REEFS

ABYSSAL PLAINS- Polymetallic Nodule Fields (4000-60 (low productivity – oligotrophic regions)

Is it really a desert? Mid north Pacific ~4000m

Selected images Courtesy of Rashid Sumalia

Life without sunlight.

Chemosynthetic ecosystems are found at:

Mid ocean ridges (blue)
Subduction Zones (red)

Hydrothermal Vent and Seep animals reliant on

Kiwa puravida sp. nov.

Whale-Falls

Wood Falls

Trends in the deep sea Dwarfism (to cope with low food)

Gigantism (to find food)

tubeworms

Nematodes

Harpacticoid copepods

Foraminifera

Ostracods

Exceptional Longevity, Slow Growth

Smooth oreo dory – 100 y

Black Oreo-153 y

Orange Roughy - 149 y

17,000 y old Monorhaphis chuni

Sablefish – 114 y

2,320 years old Garrardia sp. Leiopathes sp.

4,265 years old

Images NOAA and **MBARI**

Seep tubeworms at

least 300 yrs old

Adaptation to extremes

55°C

- High Temperature
- Low Oxygen
- Hydrogen Sulfide

• High Pressure

1% O₂

Saturation

800 atm.

about the deep ocean?

The ocean is our greatest climate mitigator

CARBON BURIAL

NUTRIENT REGENERATION

Heterogeneity **Begets Biodiversity**

Mesopelagic

Methane Seeps

Cold water coral & sponge reefs

Rainforests of the deep: corals and sponges

Biodiversity as a service: Examples from Hydrothermal Vents

SCRUBBING CO₂ Thiomicrospira crunogena XCL-2 industrial removal of CO₂

Sulfide oxidizing gammaproteobacteria Thermally stable carbonic anhydrase

NATURAL ARMOR

Crysomallon
Squamiferum as
Inspiration for
stronger materials
for airplane hulls,
cars, and military
equipment

ARTIFICAL BLOOD

Tube worm haemoglobin as a template

Supporting Services: New-Found Nurseries

Baillon et al. 2012

A Growing Demand for Resources

A growing population

Demanding more:

FOOD

TRACE & RARE EARTH ELEMENTS

ENERGY

Biodiversity Generates Resources

Growing Human Resource Extraction

Oil and Gas at Depth

Humans can influence the deep ocean by what they put in

Who Owns the Ocean?

Exclusive Economic Zones (148 countries)

Extended Continental shelf

International Seabed Authority "The Area" (Minerals)

International FAO (Fish)

UK, Singapore, China, Japan, Korea, France, Germany, Belgium, Korea, Tonga, Norway, Russia, Nauru, Kiribati, 10°s Bulgaria, Cuba, Czech Republic, Poland, Russian Federation and Slovakia India Korea Germany

China

Deep-water Oil & Gas

Deep-water Fisheries

SOURCE: Alex Chakhmakhchev, IHS Copyright© 2010 litS Inc. All Rights Reserved

http://www.aogr.com/magazine/editors-choice/independents

http://thefishproject.weebly.com/deep-sea-fisheries.html

Sustainability Challenges in the Deep Ocean

- Studying the deep ocean is expensive and difficult. Areas are vast and difficult to access.
- We still have documented very little of the biodiversity.
- Deep-sea environments are changing via climate influence.
- Life-history traits of deep-sea organisms suggest they will recover from disturbance very slowly.
- > 148 countries managing their own deep waters
- The deep ocean is managed separately by sectors (e.g., energy, fishing, seabed mining) with gaps (biodiversity).
- Increasing human demand for resources creates a new imperative for expanded science and conservation of deep-ocean ecosystems and their services.

Coordinate Global Observing Systems to address scientific and societal questions.

SPACE OBSERVATIONS Deep Argo Argo BGC Argo TIME SERIES

SUBMERSIBLES

ROVS AUVS

ANIMAL TAGS PASSIIVE ACOUST

Mission Statement

DOSI seeks to integrate science, technology, policy, law and economics to advise on ecosystem-based management of resource use in the deep ocean and strategies to maintain the integrity of deep-ocean ecosystems

